Endothelial progenitor cells in diabetes complications

Cover Page


Patients with diabetes mellitus (DM) have a 2- to 4-times higher risk of developing cardiovascular complications compared with non-diabetic controls. Hyperglycemia activates pathophysiological mechanisms that damage the endothelium. According to the current views, circulating progenitor cells derived from bone marrow repair the damage. These cells, known as endothelial progenitor cells (EPCs), maintain endothelial homeostasis and contribute to the formation of new vessels. Many clinical studies have reported that EPC population is dysfunctional and declines in numbers in patients with type 1 and type 2 DM. In addition, bone marrow doesn?t respond adequately to mobilizing stimuli in DM. Therefore, EPC alterations might have a pathogenic role in the complications of DM. In this review, EPC alterations will be examined in the context of macrovascular and microvascular complications of DM, highlighting their roles and functions in the progression of the disease.

About the authors

Marina Cergeevna Michurova

Endocrinology Research Centre, Moscow

Author for correspondence.
Email: michurovams@gmail.com

Russian Federation PhD student

Victor Yur'evich Kalashnikov

Endocrinology Research Centre, Moscow

Email: Victor9368@gmail.com

Russian Federation MD, PhD, Head of the Emergency and Interventional Cardiology Department

Olga Michailovna Smirnova

Endocrinology Research Centre, Moscow

Email: Dr_smr@mail.ru

Russian Federation MD, PhD, Professor, Chief Researcher in Program Education and Treatment Department in Diabetes Institute.

Irina Vladimirovna Kononenko

Endocrinology Research Centre, Moscow

Email: Shakhtarina@bk.ru

Russian Federation MD, PhD, Leading Researcher in Program Education and Treatment Department in Diabetes Institute.

Olga Nikolaevna Ivanova

Endocrinology Research Centre, Moscow

Email: Genetics2@yandex.ru

Russian Federation PhD, senior staff scientist, Laboratory of Genetics and Clinical Immunology


  1. Avogaro A, de Kreutzenberg SV, Fadini G. Endothelial dysfunction: causes and consequences in patients with diabetes mellitus. Diabetes research and clinical practice. 2008;82 Suppl 2:S94–S101. doi: 10.1016/j.diabres.2008.09.021
  2. Brownlee M. The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes. 2005;54(6):1615–1625. doi: 10.2337/diabetes.54.6.1615.
  3. Asahara T. Isolation of Putative Progenitor Endothelial Cells for Angiogenesis. Science. 1997;275(5302):964–966. doi: 10.1126/science.275.5302.964.
  4. Ii M, Takenaka H, Asai J, et al. Endothelial progenitor thrombospondin-1 mediates diabetes-induced delay in reendothelialization following arterial injury. Circulation research. 2006;98(5):697–704. doi: 10.1161/01.RES.0000209948.50943.ea
  5. Hazarika S, Dokun AO, Li Y, et al. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circulation research. 2007;101(9):948–956. doi: 10.1161/CIRCRESAHA.107.160630
  6. Fadini GP, Sartore S, Agostini C, Avogaro A. Significance of endothelial progenitor cells in subjects with diabetes. Diabetes care. 2007;30(5):1305–1313. doi: 10.2337/dc06-2305
  7. Authors/Task Force M, Ryden L, Grant PJ, et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). European heart journal. 2013;34(39):3035–3087. doi: 10.1093/eurheartj/eht108
  8. Khan SS, Solomon MA, McCoy JP. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry Part B: Clinical Cytometry. 2005;64B(1):1–8. doi: 10.1002/cyto.b.20040.
  9. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952–958.
  10. Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92(2):362–367.
  11. Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood. 2000;95(10):3106–3112.
  12. Masuda H, Alev C, Akimaru H, et al. Methodological development of a clonogenic assay to determine endothelial progenitor cell potential. Circulation research. 2011;109(1):20–37. doi: 10.1161/CIRCRESAHA.110.231837
  13. Case J, Mead LE, Bessler WK, et al. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp. Hematol. 2007;35(7):1109–1118. doi: 10.1016/j.exphem.2007.04.002.
  14. Bethel K, Luttgen MS, Damani S, et al. Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction. Physical biology. 2014;11(1):016002. doi: 10.1088/1478-3975/11/1/016002
  15. Hristov M, Erl W, Weber PC. Endothelial progenitor cells: isolation and characterization. Trends in cardiovascular medicine. 2003;13(5):201–206. doi: 10.1016/S1050-1738(03)00077-X
  16. Fadini GP, Losordo D, Dimmeler S. Critical re-evaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circulation research. 2012;110(4):624–637. doi: 10.1161/CIRCRESAHA.111.243386
  17. Caiado F, Dias S. Endothelial progenitor cells and integrins: adhesive needs. Fibrogenesis & tissue repair. 2012;5:4. doi: 10.1186/1755-1536-5-4
  18. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circulation research. 2004;95(4):343–353. doi: 10.1161/01.RES.0000137877.89448.78
  19. Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858–864. doi: 10.1038/nm1075
  20. Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109(5):625–637. doi: 10.1016/S0092-8674(02)00754-7
  21. Krankel N, Adams V, Linke A, et al. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arteriosclerosis, thrombosis, and vascular biology. 2005;25(4):698–703. doi: 10.1161/01.ATV.0000156401.04325.8f
  22. Yiu KH, Tse HF. Specific role of impaired glucose metabolism and diabetes mellitus in endothelial progenitor cell characteristics and function. Arteriosclerosis, thrombosis, and vascular biology. 2014;34(6):1136–1143. doi: 10.1161/ATVBAHA.114.302192
  23. Fadini GP. An underlying principle for the study of circulating progenitor cells in diabetes and its complications. Diabetologia. 2008;51(7):1091–1094. doi: 10.1007/s00125-008-1021-0
  24. Fadini GP, Pucci L, Vanacore R, et al. Glucose tolerance is negatively associated with circulating progenitor cell levels. Diabetologia. 2007;50(10):2156–2163. doi: 10.1007/s00125-007-0732-y
  25. Tepper OM, Galiano RD, Capla JM, et al. Human Endothelial Progenitor Cells From Type II Diabetics Exhibit Impaired Proliferation, Adhesion, and Incorporation Into Vascular Structures. Circulation. 2002;106(22):2781–2786. doi: 10.1161/01.cir.0000039526.42991.93
  26. Loomans CJ, de Koning EJ, Staal FJ, et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004;53(1):195–199. doi: 10.2337/diabetes.53.1.195
  27. Кочегура Т.Н., Акопян Ж.А., Шаронов Г.В., и др. Влияние сопутствующего сахарного диабета 2 типа на количество циркулирующих прогениторных клеток у больных с ишемической кардиомиопатией. // Сахарный диабет. – 2011. – №3 – С. 36–43. [Kochegura TN, Akopyan ZA, Sharonov GV, et al. The influence of concomitant type 2 diabetes mellitus on the number of circulating progenitor cells in patients with ischemic cardiomyopathy. Diabetes mellitus. 2011;14(3):36–43.] doi: 10.14341/2072-0351-6222
  28. Dessapt C, Karalliedde J, Hernandez-Fuentes M, et al. Circulating vascular progenitor cells in patients with type 1 diabetes and microalbuminuria. Diabetes care. 2010;33(4):875–877. doi: 10.2337/dc09-1468.
  29. Brunner S, Schernthaner GH, Satler M, et al. Correlation of different circulating endothelial progenitor cells to stages of diabetic retinopathy: first in vivo data. Investigative ophthalmology & visual science. 2009;50(1):392–398. doi: 10.1167/iovs.08-1748
  30. Fadini GP, Miorin M, Facco M, et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. Journal of the American College of Cardiology. 2005;45(9):1449–1457. doi: 10.1016/j.jacc.2004.11.067
  31. Choi JH, Kim KL, Huh W, et al. Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arteriosclerosis, thrombosis, and vascular biology. 2004;24(7):1246–1252. doi: 10.1161/01.ATV.0000133488.56221.4a
  32. Thum T, Tsikas D, Stein S, et al. Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine. Journal of the American College of Cardiology. 2005;46(9):1693–1701. doi: 10.1016/j.jacc.2005.04.066
  33. Bahlmann FH, De Groot K, Spandau JM, et al. Erythropoietin regulates endothelial progenitor cells. Blood. 2004;103(3):921–926. doi: 10.1182/blood-2003-04-1284
  34. Herbrig K, Gebler K, Oelschlaegel U, et al. Kidney transplantation substantially improves endothelial progenitor cell dysfunction in patients with end-stage renal disease. American journal of transplantation. 2006;6(12):2922–2928. doi: 10.1111/j.1600-6143.2006.01555.x
  35. Makino H, Okada S, Nagumo A, et al. Decreased circulating CD34+ cells are associated with progression of diabetic nephropathy. Diabetic medicine. 2009;26(2):171–173. doi: 10.1111/j.1464-5491.2008.02638.x
  36. Butler JM, Guthrie SM, Koc M, et al. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. Journal of Clinical Investigation. 2005;115(1):86–93. doi: 10.1172/JCI200522869
  37. Fadini GP, Sartore S, Baesso I, et al. Endothelial progenitor cells and the diabetic paradox. Diabetes care. 2006;29(3):714–716. doi: 10.2337/diacare.29.03.06.dc05-1834
  38. Asnaghi V, Lattanzio R, Mazzolari G, et al. Increased clonogenic potential of circulating endothelial progenitor cells in patients with type 1 diabetes and proliferative retinopathy. Diabetologia. 2006;49(5):1109–1111. doi: 10.1007/s00125-006-0180-0
  39. Tan K, Lessieur E, Cutler A, et al. Impaired function of circulating CD34(+) CD45(-) cells in patients with proliferative diabetic retinopathy. Experimental eye research. 2010;91(2):229–237. doi: 10.1016/j.exer.2010.05.012
  40. Fadini GP. Is bone marrow another target of diabetic complications? European journal of clinical investigation. 2011;41(4):457–463. doi: 10.1111/j.1365-2362.2010.02417.x
  41. Ferraro F, Lymperi S, Mendez-Ferrer S, et al. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Science translational medicine. 2011;3(104):104ra101. doi: 10.1126/scitranslmed.3002191
  42. Fadini GP, Albiero M, Vigili de Kreutzenberg S, et al. Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes care. 2013;36(4):943–949. doi: 10.2337/dc12-1084
  43. Fadini GP, Ferraro F, Quaini F, et al. Concise review: diabetes, the bone marrow niche, and impaired vascular regeneration. Stem cells translational medicine. 2014;3(8):949–957. doi: 10.5966/sctm.2014-0052
  44. Fadini GP. A reappraisal of the role of circulating (progenitor) cells in the pathobiology of diabetic complications. Diabetologia. 2014;57(1):4–15. doi: 10.1007/s00125-013-3087-6
  45. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. The New England journal of medicine. 2003;348(7):593–600. doi: 10.1056/NEJMoa022287
  46. Vasa M, Fichtlscherer S, Aicher A, et al. Number and Migratory Activity of Circulating Endothelial Progenitor Cells Inversely Correlate With Risk Factors for Coronary Artery Disease. Circulation research. 2001;89(1):e1–e7. doi: 10.1161/hh1301.093953
  47. Sibal L, Aldibbiat A, Agarwal SC, et al. Circulating endothelial progenitor cells, endothelial function, carotid intima–media thickness and circulating markers of endothelial dysfunction in people with type 1 diabetes without macrovascular disease or microalbuminuria. Diabetologia. 2009;52(8):1464–1473. doi: 10.1007/s00125-009-1401-0
  48. Fadini GP, Coracina A, Baesso I, et al. Peripheral Blood CD34+KDR+ Endothelial Progenitor Cells Are Determinants of Subclinical Atherosclerosis in a Middle-Aged General Population. Stroke. 2006;37(9):2277–2282. doi: 10.1161/01.str.0000236064.19293.79
  49. Kunz GA, Liang G, Cuculi F, et al. Circulating endothelial progenitor cells predict coronary artery disease severity. American heart journal. 2006;152(1):190–195. doi: 10.1016/j.ahj.2006.02.001
  50. Fadini GP, Sartore S, Albiero M, et al. Number and Function of Endothelial Progenitor Cells as a Marker of Severity for Diabetic Vasculopathy. Arteriosclerosis, thrombosis, and vascular biology. 2006;26(9):2140–2146. doi: 10.1161/01.atv.0000237750.44469.88
  51. Massa M, Rosti V, Ferrario M, et al. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood. 2004;105(1):199–206. doi: 10.1182/blood-2004-05-1831
  52. Marti-Fabregas J, Crespo J, Delgado-Mederos R, et al. Endothelial progenitor cells in acute ischemic stroke. Brain and behavior. 2013;3(6):649–655. doi: 10.1002/brb3.175
  53. Руда М.М., Арефьева Т.И., Соколова А.В., и др. Циркулирующие предшественники эндотелиальных клеток при нарушенном углеводном обмене у больных ишемической болезнью сердца. // Сахарный диабет. – 2010. – №1. – С. 13–20. [Ruda MM, Aref'eva TI, Sokolova AV, Shestakova MV, Karpov YA, Parfenova EV. Circulating precursors of endothelial cells in patients with CHD and disturbed carbohydrate metabolism. Diabetes mellitus. 2010;13(1):13–20]. doi: 10.14341/2072-0351-6011
  54. Ling L, Shen Y, Wang K, et al. Worse clinical outcomes in acute myocardial infarction patients with type 2 diabetes mellitus: relevance to impaired endothelial progenitor cells mobilization. PloS one. 2012;7(11):e50739. doi: 10.1371/journal.pone.0050739
  55. Antonio N, Fernandes R, Soares A, et al. Reduced levels of circulating endothelial progenitor cells in acute myocardial infarction patients with diabetes or pre-diabetes: accompanying the glycemic continuum. Cardiovascular diabetology. 2014;13:101. doi: 10.1186/1475-2840-13-101
  56. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. The New England journal of medicine. 2005;353(10):999–1007. doi: 10.1056/NEJMoa043814
  57. Schmidt-Lucke C, Rossig L, Fichtlscherer S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005;111(22):2981–2987. doi: 10.1161/CIRCULATIONAHA.104.504340
  58. Schwartzenberg S, Afek A, Charach G, et al. Comparative analysis of the predictive power of different endothelial progenitor cell phenotypes on cardiovascular outcome. World journal of cardiology. 2010;2(9):299–304. doi: 10.4330/wjc.v2.i9.299
  59. Fadini GP, Maruyama S, Ozaki T, et al. Circulating progenitor cell count for cardiovascular risk stratification: a pooled analysis. PloS one. 2010;5(7):e11488. doi: 10.1371/journal.pone.0011488
  60. Inoue T, Croce K, Morooka T, et al. Vascular Inflammation and Repair: Implications for Reendothelialization, Restenosis, and Stent Thrombosis. JACC Cardiovascular Interventions. 2011;4(10):1057–1066. doi: 10.1016/j.jcin.2011.05.025
  61. Bonello L, Harhouri K, Baumstarck K, et al. Mobilization of CD34+KDR+ endothelial progenitor cells predicts target lesion revascularization. Journal of Thrombosis and Haemostasis. 2012;10(9):1906–1913. doi: 10.1111/j.1538-7836.2012.04854.x
  62. Pelliccia F, Cianfrocca C, Rosano G, et al. Role of endothelial progenitor cells in restenosis and progression of coronary atherosclerosis after percutaneous coronary intervention: a prospective study. JACC Cardiovascular Interventions.. 2010;3(1):78–86. doi: 10.1016/j.jcin.2009.10.020
  63. Pelliccia F, Pasceri V, Rosano G, et al. Endothelial progenitor cells predict long-term prognosis in patients with stable angina treated with percutaneous coronary intervention: five-year follow-up of the PROCREATION study. Circulation journal. 2013;77(7):1728–1735. doi: 10.1253/circj.CJ-12-1608
  64. Kolh P, Windecker S, Alfonso F, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). European journal of cardio-thoracic surgery. 2014;46(4):517-592. doi: 10.1093/ejcts/ezu366
  65. Zhao CT, Wang M, Siu CW, et al. Myocardial dysfunction in patients with type 2 diabetes mellitus: role of endothelial progenitor cells and oxidative stress. Cardiovascular diabetology. 2012;11:147. doi: 10.1186/1475-2840-11-147

Supplementary files

There are no supplementary files to display.



Abstract - 1458

PDF (Russian) - 1499




Copyright (c) 2014 Michurova M.C., Kalashnikov V.Y., Smirnova O.M., Kononenko I.V., Ivanova O.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies